Chapter 1

Introduction to Logic Basic

1.1 Presentation

Logic Basic is a high-level programming language, inspired by the
older versions of the Basic language, such as MS Basic Compiler,
Microsoft QuickBasic, GW-Basic, and so on. Basic stands
“Beginner's All-Purpose Symbolic Instruction Code”.

One of the purposes of Logic Basic is to provide programming in
Basic adapted to modern window operating systems, since the older
versions of Basic were designed for the MS-DOS operating system.
Another purpose is to facilitate program development by providing
simple commands and functions that perform tasks that are difficult to
implement in other programming languages, making programming
pleasant, simple, fun and interesting.

Logic Basic allows the user to easily develop commercial programs,
reports, animations, games, presentations, educational programs,
musicals and more.

1.2 The Logic Basic Interface

Logic Basic has a code environment where you write your program,
this environment has a text box to the main code and more 6 text
boxes for the code extensions. It also has the environment of
windows, where the results of the program will be shown.

Fil= Edit Program Help

los. a4 Pl RERD | 606860000]
oy . % Components a- Default Tupesz of Drefauilt D efauilt
. (gt FieErmlie l \ wizard l l ol pictures l [buttonz l l»ﬁ’ Animationz l l@ B ackgrounds l

01 War Answer Ztring

oz
03 Answer = GetText{"That's yvour nam=?")

b ain code | |

04 Posgition 10, 30
05 Write ilnswer
[n])

In Logic Basic the program is executed sequentially, that is, from the
first line to the last line, or until the line where the EndProgram
command is placed. However, the order of program execution can be
changed by the GoTo command or by subroutines and functions.

To run the program, click on the "Run" button (green arrow to the
right) or press the F5 key, in this way Logic Basic will load the main
window, which is the location that will receive the code commands,
which can write texts, create buttons, text boxes, pictures,
animations, background images, draw geometric shapes, and also
allow you to interact with the keyboard, mouse, hard disk,
microphone, and so on.

1.3 Code extensions

There are also "Code extensions", which are text boxes where you
can put some code snippets to better organize your program. To
access the main code, you must press the code button (button
containing the letter "C"), and to access the extensions, simply press
one of the 6 red buttons on the right side of the code button.

You can imagine these extensions as a continuation of the main code,
so that when you run the program, it will be as if they were
concatenated (stitched) to the main code.

If you press one of the buttons of "code extensions”, the Logic Basic
shows in the text box below the code that corresponds to the
respective extension. At the top right of the code window there is a
text box labeled "Code Name" where you can be written a hame to
identify the code extension. This name is optional, it is not necessary
to put it, but it is recommended to improve the clarity and reasoning of
the program.

LB | ogic Basic
File Edit Program Help

P E S | P | _:‘A e e TN TN NT) | | Screen Customers | |
iy % Compopgiis Drefault Types of Drefault Drefault
\L Cuestaiinis i l \ wizar l 5- pictures l l buttons F. ‘:" Animations B ackgrounds

r

01 Sub ZcreenCustomersd()

oz Var DI String

o3

o4 Text TxtMNawe, 4, 1, 35

o5 Text TxtMame.Max = 50

O& Text TxtMame.TabIndex = O

o7 Text Txtiddress, 7, 1, 50

[Text Txthddress.Max = 70

a9 Text Txtiddress.TabIndex = 1

10 Text TxtFhone, 10, 1, 26

i1 Text TxtPhone.Max = 30

1z Text TxtPhone.TahIndex = 2

13 Mask MskBirth, "H#/g#/##is", 13, 1, 12

14 Mask MskEirth.TabhIndex = 3

15 Button Btnidd, Typel, 15, 1, "idd", "PicoE", "¢

1a Button EBtnidd.TabIndex = 4

17 Button EtnUpdate, Typel, 15, 13, "Update™, "PicZSave™, "7
15 Button EtnlUpdate.TabIndex = 5

i3 Button Btnlelete, Typel, 15, 26, "Delete™, "Piclhelete™, ™0
20 Button EBtnlDelete.TabIndex = 6

21 Button BtnExit, Typel, 15, 38, "Exit"™, "PicExit®™, &
Zi Button BtnExic.TabIndex = 7

23 Button BtnCompact, Type6, 15, 55, "Compact datskhase"
24

25 Label Lbhll, "Customer mahagement™, 1, 1, 2, 30

Z6 Lahel Lbli.FontSize = 12

27 Label Lkhl1l.Bold = True

zg& Label LblMame, "Mawme®, 3, 1, 1, 19

29 Label Lbliddres, "iddress™, &, 1, 1, 20

30 Lahel LklPhone, "Fhone=", 9, 1, 1, 14

31 Label LblEirth, "Date of kbirth", 12, 1, 1, 20

32 Box ListBox, 17, 1, &

33 Box ListBox.Title, "Zeg", 5, Center, Alphalumeric

34 Box ListBox.Title, "Name'"™, 20, Left, Alphalumeric

35 Box ListBox.Title, "iddresz", 25, Left, Alphalumeric
36 Box ListBox.Title, "Phone®™, 13, Left, Alphalumeric
37 Box ListBox.Title, "Birth", 10, Center, Alphalumeric
3a Box ListBox.ictivate

39 Box ListBox.TabIndex = &

40 EndSub

1.4 Bookmarks

The LB Editor has the “Bookmark” feature that allows the user to
mark certain lines of code and then find them quickly, which is useful
when the code is too long. To mark or unmark a line, position the
cursor on the line and press CTRL + F2. Therefore, when the user

wishes to go to the next line containing a bookmark, simply press the
F2 key.

Logic Basic

File= W[l Program Help
R G 3106660600] Main cods L
—— Redo CEHG
tﬁ i Components Default m Typesz of Default Default
i Main code wizard Lodh pictures buttons SAF Apimations Backgrounds
— | Code extension 1
Code extension 2 L Eise
Code extension 3
. o
Code extension ¢
Code extension 5 i
Code extension & ifr, 1
Fird. .. Ctrl+F
Find next F3 L=t
Replace. .. Chrl+H et
o CHrl4Ez
@0 to next bookmark Fz AnimatedBif Alien.Col = 10
G0 ko previous bookmark Shift+F2
G0 to lne... Chrl+G
Settings
17 AnimatedGif Llien.lNextFrame
ia Animatedbif Angel.NextFrame
19 Animatedbif ingel.Lin = ¥
z0
21 ¥ =Y + Inc
22 If ¥ > 50; Ine = —-1; EndIf
23 If ¥ < 0; Inc = 1; EndIf
24 Wait 50
25 Loop
Z6

File Edit Program Help
EN R = = b“Jlin%:'lG@@@@@@l| Main code ||
= . . Components Default Types of Default Drefault
t\\L AnimatedGitLbe wizarpd L4 pictures ‘ ‘ m bﬂaons SANF Animations ‘ B ackgrounds
01 War ¥ Integer, Inc Integer, T 3tring
0z
03 Window Background="Zpace,. jpg™
04
05 AnimatedGif Alien, "ilien.gif'™
06 AnimatedGif Lngel, "ingel.gif™, 1
av
05 AnimatedGif Llien.Visible = True
09 AnimatedGif Angel.VWisible = True
10
11 AnimatedGif Alien.Lin = 5; AnimatedBGif Alien.Col = 10
12 AnimatedGif ingel.Col = 70
13
14 ¥ = 5; Inc =
15 While 1 = 1 rixpfinite loop

16 Cls
17 AnimatedGif iLlien.NextFrame
15 AnimatedGif Angel.NextFrame
19 AnimatedGif Angel.Lin = ¥
Z0

1| Y=7+ Inc
22 If ¥ > 50; Inz = -1; EndIf
23 If ¥ < 0; Inc = 1; EndIf
24 Wait 50
25 Loop

26

1.5 Workspace Settings

The code environment can be configured according to user
preferences by accessing the Edit - Settings options, which will
display a window that allows you to configure font, commands color,
background color, and to turn lines numbering on or off.

LB Workspace settings

Font:
|Eu:uurier MHew “ |'IEI b |

Sample:

00 Wariable X Integer, ¥ String -
o1

02 rSet window background and resolution

03 Window Background = "Zpace.jpg”™, Res = 50, 100

e

05 Mes=zage "Are you sure?”, OptionYesho

I:I Background
. Foreground

. Commands color

. Keywords color

. Attributes color

. Corment calar
. Cperators color
. Cuohes color
I:I Cursor line color
|:| Left bank color

. Murmeration color

bl bl b bk

-
4| | >

Enable automatic line numbering

" 0K

1.6 Debug the program code

Often programming errors occur, undeclared or incorrectly declared
variables, syntax errors, invalid characters in the code, and so on. To
facilitate the identification of the cause of errors, a debugging routine
was created, so that when executing the program, the LB will display
in a small window the number of the editor (O for main code, 1 for 6 for
code extensions), the number line and the contents of the text being
executed. Then the user can follow the execution of the code step by
step to the line where the error is occurring.

e

NEEAS @ |3 ERERS 6686060 Main code | |

Types aof
‘ buttons

Drefault

Py, . % Components
.. Frist Program.lbe | \ A3 Animations

wizard

Drefauilt
vl pictures

Drefauilt
Backgrounds

01 War Answer String
az

03 Answer = GetText({"What's your name?)
04 Position 10, 30
05 Write Answer

i fin - [Blx]|

LogicBasic

Editar: 0
Line: 3

Answer = GetText"What's wour name?")

oK | Cancelar

To start debugging the program code, go to the options Program —
Debug or press the corresponding button on the top bar of the
window.

1.7 Compile program (create an executable)

When you create a program, to run it, your source code must be in the
text editor of Logic Basic, so anyone can view and change their
content.

But let's assume you want to distribute or sell your program without
people having access to your source code. For this you can create an
auto-executable program (with the extension .exe), so that people can
run it without needing Logic Basic.

To compile your program, go to the Program — Compile options or
click the corresponding button in the upper bar of the window:

LE | ogic Basic - Compile programs

@ Compile program (create an executable)

[Chooze source code l [Chooze executable name l

|F:'\T emp*Frizt Program. lbc | |F:'\T emphFirgt Program.exe |
Internal name Qriginal filename

|First Program | |First Program.exe |

Executable program icon

|F:'\T emphComputer.ico |

Product name

|First Program |
File werzion Product verzion
[1.0.00 | [1.0.00

Program description

|First program of Logic Basic |

Author's name [copyright]

|Eleusmarin . Rabelo |

Company owns

|Ma:-:issu:uft |

Create executable

To compile the program follow these steps:

- Select the name of the source code (with extension .LBC,
abbreviation of Logic Basic Code), you can enter the name or click on
the "Choose source code" button;

- Choose the name of the executable program (with .exe extension),
you can enter the name or click the "Choose executable name"
button;

The following steps are optional:

- Internal name: Original name of the file without the extension.

- Original filename: Name of the file with the extension.

- Executable program icon: File name of the program icon (with .ico
extension), enter the path of the icon or click on the binocular to find it.
- Product name: The name of the product this file is distributed with.

- File version: The version number of the file.

- Product version: The version of the product this file is distributed
with.

- Program description: Brief description of the program.

- Author's name (copyright): Name of the author of the program.

- Company owns: Name of the company owner of the program.

1.8 Components Wizard

Logic Basic provides a tool to make it easier for you to create
components and design the interface of your application.

When you access this routine, you will see a window with a small
toolbox containing several types of components: Text, Button,
Currency, Check Button, Radio Button, Combo Box, List Box, Mask,
and Frame. Click on a component and then mark in the window the
location that you want to place it, for example:

LB Component wizard @@@
Window Visualize
Components m What's wour neme? Properties m
e M ame EtrCik
| e ox
(:\ Colunn 18
_______ Height 1
= = idth 12
.J = Picture

—— paac Tir
B ackCaolor 14215660

ForeColor -2147483630

Fiotith anne IMS Sans Serif
FontSize 5
E old False
T ablndex 1

When the design of your page is ready, you can generate the
corresponding code by clicking the Window — Generate Code
options or pressing the F3 key, which will then display a text box with
the code that you can copy and paste in your program:

Sub Screend(]
window Size = 27, 79, Res = 27, 79
Teut TutMame, 3, 18,13
Text TetMame. Tablndex =0
Button BwOE, Typel, 6,18, "0k, ™
Button BinOK. BackCaolor = 14215660
Button BinOK. Tablndex =1
Label LbIMame, "what's your name?", 1, 18,1, 24
Label LbIMame. Fanth ame = Courisr New
Label LbIMame.FontSize =10

EndSub

Mote; the above code hag been placed on the
windows clipboard « OK

Note that the generated code is a subroutine, so you should place it
after the EndProgram command:

idgdd |9 I E S 00 680606 | Main cod L

I~ % Components ﬂ. Defaut Types of Defaul Default

W, Manlie l\ wizard] l 9 pictures ‘ I butons l l;;‘:' Ammaunnsl ’é Eackgrnur\ds]
01 Screen 10

06 Sub Screen 10)

07 Window Size — 27, 79, Res — 27, 79 WEENS ! & GEIE Shn
08 Tewt TxtHeme, 3, 18, 19

05 Text TitName.TabTndex - 0 1
10 Button BtnOK, Typei, 6, 18, MOKM, mr, mv

11 Butten BtnOK.BackColor = 14215660

1z Button BrnOE.TabTndex - 1

13 Label LblName, "Vhat's your neme?", 1, 18, 1, 24
14 Label LblName.FontHame = Courier New

15 Label LblName.FontSize = 10

16 EndSub

17

1.9 Default Pictures

Logic Basic provides a window with several default pictures, whose
names can be assigned to the Picture property of components, to get
the name of the figure, double-click on it, that its name will be
transferred to the position of the cursor in the text box code.

Uz
iNEHS |9 o) B =S 6666066 | Main code |
% Components H [refault Types of Drefault Drefault
. Wl \ wizard [- pictures buttons SN Animations l@ Backgrounds

01 Button Etn3ave, Typel, &, Z, "3Iave", Piclave
oz
o3

LB

— Logic Basic default pictures

Logic Basic default pictures - Click on the picture you want to select

v =] % & = B a @ M| s @
PicOK. PicSave PicDelete PicExit PicOpen PicMew PicPrint Picadd FicFind Fict FicPeople
=] W (Y 9 &) B 4 by & LT =
FicGlass PicOKZ PicForbidden Piclndo PicRedo PFicRight Picleft FicTools PickMoney PicExit2 FicForm

ole da » e el m

PicGear PicBook PicBooks PicBal FicCal FicChart PicFolder Pickeps PicGlobe PicTalk Pichonitor

1.10 Types of Buttons

You can create buttons of various predefined types by clicking the
“Types of Buttons" button and clicking the type of button you want
to create. Once this is done, the button code will be transferred to the
cursor position in the text box, and you can change the button position
(line, column) by changing the third and fourth arguments.

e

R BEDD 000660600] Main coce i

Types of Drefault
l buttons l@ B ackgrounds

Default
SN Animations

Default

Components
. pictures

wizard

r'?'::"b MNew.Lbc [‘\

01 Button BtnWNew, Typel, 1, 1, "OE"

\ LB Types of buttons
\TypES of Buttons

I ~ Typel l [Type]
Type3 ‘ ‘ Typed ‘ Type§ ‘
=

Typed Tvped

1.11 Default Animations

Logic Basic provides several standard animations that can be used in
your programs, especially games, and you can easily create an
animation with basic properties by clicking the "Default Animations"
button, choosing an animation and double-clicking on it, then the
animation code will be transferred to the text box.

- Logic Basic

PN HGS 9 s b a6 000060] Main cods i

\ Mew Lbc

Drefault
S Animations

T vpes of
buttons

Drefault
Backgrounds

4 Compor Default
\ wizard pictures

01 AnimatedGif AniGifld, "GifFredl™
02 AnimatedGif AniGifle.Wisible = True

03 AnimatedGif AniGifle.Flay

Then you can change the properties and methods of the animation to

Mote: double-click on the thurmbnail
ta transfer his code to the text box

oS

i &
i B . F.3 - o] .
GifBass1 GilBass2 GifTorch GifExplol GifEsplo2 GifExplo3 GifF b2 GifMariol GifMaio?2 GifFunny

e . é‘ ? o wffe %} (@1

GifGlobe GifDeathStar GifRocketl GifRocket2 GifFocket3 GifRocketd GifRocketS GilRockets GfF! kt? GifFoy ktE

1 0 ctien iy O P D0

GifMizzilel GilMissile2 GifRing GifCarl GifCar2 GifFish1 GifFizh2 GifFizh3 GifFish4

GifFizh& GifFish& GifD alphini GifDalphinz GifShark1 GifShark? GifPlanel GifPlane2

o e S it e dn WP & d

i 6o mae— |

GifCarBlue GifCarGreen GifCarlRed GifLogickld GifTruck1 GifTruck2 GifFacketl GifFacket2

GifFragl GifFrog2 GifFrag3 ifFro ifFros ifBee GilBee2 GilBall GifSonicl GifSonic2

Gifflarne3 GiFlaned GiflJFOT GifUFO2 Gitlel GifSpaceShp GilSpaceShip3D Gitlet2 GifCarrellow

change the position, size, and so on.

Logic Basic also offers several images that can be used as
background of the windows of your programs, to generate the code
corresponding to a background click on the button "Default

1.12 Default Backgrounds

Backgrounds", choose an image and double-click on it.

lo@ZHdd 0o 0 a B 666060060] Man code i

%l New.Lbc

Default
wF Animations

Compaonents
L wizard

m Types of
buttonz

D efault
Backgrounds

Drefault
\ pictuies

01 Window Background =
0z

"BackChristwas"

Default backarounds

BackFarm

BackChristmas

BackSpace

BackCastle2

B acklunglel BackCastlel

i

Backlungle2

BackCity2 BackCity3 BackDeszert BackCastled

o

BackForest] BackVilage

EackForest2 BackCave

Chapter 2

Creating Logic Basic Applications

2.1 The Main Logic Basic Window

When you run a program in Logic Basic, the main window is activated
to display the result of the first program commands. You can use only
the main window, or new windows that can be turned on and off at
any time to perform other routines.

To position a text, component, or graphic in the main window, you
must tell LB the row and column to be placed. By default the main
window has 27 rows by 78 columns, but this resolution can be
changed in the Window command.

/8 columns

L8 | ogic Basic - Mew.Lbc

27 lines

2.2 Writing a text in the main window
To write a text in the main window in a position defined by Line,
Column, we first inform the desired position, and then the text to be
written in the window:

Position 11, 30
Write "Welcome to Logic Basic!"

Then press the "Run" button, or press F5. The result should be the
phrase Welcome to Logic Basic! written in the center of the main
window.

To close the window and return to the code text box, press F6.

2.3 Creating a small application in Logic Basic

Our first application will be a program to calculate the average of two
numbers:

L8 | ogic Basic - Average.lbc E@E|

First number: 10,00
Jecond number: 2000

| Calculate!

Generally the basic steps for creating an application in Logic Basic
are as follows:

Step 1: Scale and configure the application window.

Step 2: Create the program interface.

Step 3: Write the code that will control the program.

So the first step is to define the size and position of the window, which
will be in the center of the video monitor:

Window Size = 10, 40, Pos = Center, Center

With this configuration our window will have 10 lines by 40 columns
and will be centered in the video monitor.

The second step is to create the program interface, which will write
two sentences and create two Currency components and one
Command Button:

Position 2, 3; Write "First number:"

Position 4, 3; Write "Second number:"
Currency Number1, 2, 20, 10

Currency Number2, 4, 20, 10

Button BtnCalculate, Type7, 6, 18, "Calculate!"

The third step is to write the code that will control the program, in our
case, start the variables, position the cursor in the first field, wait for a
click on the button, and calculate the average of the two numbers:
StartPosition:

Currency Number1.Value =0

Currency Number2.Value = 0

Currency Number1.SetFocus

Wait ClickButton

Message "The average of these two numbers is: ", (Number1.Value +
Number2.Value) / 2

GoTo StartPosition

EndProgram

In the code that controls the program, we put a label of name
"StartPosition" to mark the beginning of the routine. Then we start the
two numeric fields with the value equal to zero, and place the cursor
in the first field. Then we call the command "Wait ClickButton" to wait
for a click on the button. When the button is clicked a message will
appear with the result of the average of the two numbers. Finally, with
the command "GoTo StartPosition", we direct the execution of the
program to the beginning of the routine, thus allowing a new
calculation.

File Edit Program Help

T B T (= O N - N = W= P < O [L2 0 = - Main code |
oy % Components Default Types of B Default Default
L, el l ’\ wizard l pictures [buttons F. ‘."‘ Animations l Backgroundz
01 Window Size = 10, 40, Pos = Center, Center
02
03 Position 2, 3; Write "First number:"
04 Position 4, 3; Write "Second number:"
05 Currency Numberl, 2, 20, 10
06 Currency Number2, 4, 20, 10
07 Button BtnCalculate, Type7?, 6, 18, "Calculate!"
08
09 StartPosition:
10
11 Currency Numberl.Value = @
12 Currency Number2.Value = 0
13 Currency Numberl.SetFocus
14
15 Wait ClickButton
16
17 Message "The average of these two numbers is: ", (Numberl.value + Number2.value) / 2
18 ' ;
19 GoTo StartPosition
20
21 EndProgram
22 First number:
23

Second number: 20,00

Calculate!

Average

—

@ The average of these two numbers is: 15

Chapter 3

Working with Variables

3.1 Variables Explanation

A variable is a user-supplied name to a location in the computer's
memory, which can contain text, numbers, and characters, and can
be modified at any time by the program.

In Logic Basic all variables must be declared before they are used,
because the program needs to know the type of each variable to work
with them correctly.

3.2 Declaring Variables

In other programming languages there are many types of variables,
for example, numbers can be Byte, Small Integer, Integer, Long
Integer, Float, Double Precision, and so on. In the old days it was very
important to have many types of variables, because the old
computers had little memory and disk space, and it was necessary to
design the programs +to save the maximum memory.

As one of the goals of Logic Basic is to simplify programming, and
today's computers have lots of memory and disk space, all types of
variables are summarized into three types: String, Integer, and
Decimal.

To declare a variable you must type the word Variable or simply Var,
and then the variable name and its type. If you do not enter the
variable type, Logic Basic will assume that it's of type String. You can
declare multiple variables on a single line by separating them with a
comma, for example:

Variable Customer String, Age Integer, Salary Decimal
or simply
Var Customer String, Age Integer, Salary Decimal

To assign texts and numbers to variables, you must write the name of
the variable, then the = operator (equal) and the text or value to be
assigned, for example:

Customer = “Steven Spielberg”
Age =70
Salary = 12345.67

Note that strings when they are assigned literally must be enclosed in
quotation marks, while numeric values can not be enclosed in
quotation marks. A number when enclosed in quotation marks will be
recognized as a string, and when unquoted, will be recognized as a
numeric value.

3.3 Rules for Variable Names

A variable name must contain at least one letter, may have only
letters or a combination of letters, numbers, and underscores, and
may contain letters, numbers, or underscores at the beginning of the
name.

Can not contain spaces, quotation marks, operators, can not have the
same name of the commands, functions, subroutines, Logic Basic
keywords, and you should avoid putting these names inside the
variable name.

3.4 Variable Data Types

String: Variables of type String can store a sequence of letters (texts),
characters and numbers (numeric characters). To literally assign text or
characters to a string, they must be enclosed in quotation marks:

Var S String
S = “Welcome to the Logic Basic!”

Integer: Integer variables store only integer numeric values, which can
range from -2,147,483,648 to 2,147,483,647.

Decimal: Decimal variables can store double-precision floating-point
numbers, as well integer numbers. Supports values that range in
value from -1.79769313486231570E+308 through
-4.94065645841246544E-324 for negative values and from
4.94065645841246544E-324 through 1.79769313486231570E+308
for positive values. Double-precision numbers store an approximation
of a real number.

3.5 Global and Local Variables

Global variables are usually declared in the main code (see rules in
the next topic) and can be accessed (used) in the main code,
extensions, functions or subroutines. Local variables are declared
inside a function and can only be used within it. It is possible to have
local variables with the same name in different functions without
causing conflicts.

It's not a good programming technique you declare many global
variables, especially in large programs, as they can cause conflicts
and confusion in the execution of your program, for example, you can
inadvertently change the value of a global variable in a subroutine,

and you do not see this in the main code of the program, in this case it
will be difficult for you to detect the error.

Otherwise, when you declare a local variable, even if it has the same
name as another variable created in the main code or inside another
function, you are sure that any change in it will not affect the value of
other variables.

3.6 Rules for Variables Declaration

Global variables are declared in any line of the main code, code
extensions, subroutines or in the middle of functions.

Local variables are declared only in the first few lines of a function
(not subroutines).

Example:

Variable X Integer, S String 'These variables are global

X=7
S ="is a prime number"

Sum() ‘Executes the function

Write X,"", S
Write "Ret =", Ret

EndProgram

Function Sum()
Variable X Integer, Y Integer 'These variables are Local

X=10;Y=20
Variable Ret Integer 'These variable is global

Ret=X+Y
EndFunction

The result of the above program will be as follows:

7 is a prime number
Ret = 30

Note that the variable X has been declared globally and locally, and
within the function the value 10 is assigned to that variable, and after
the execution of the function, the value of the global variable X (which
is equal to 7) has not changed.

