
Chapter 1

Introduction to Logic Basic

1.1 Presentation

Logic Basic is a high-level programming language, inspired by the
older versions of the Basic language, such as MS Basic Compiler,
Microsoft QuickBasic, GW-Basic, and so on. Basic stands
“Beginner's All-Purpose Symbolic Instruction Code”.

One of the purposes of Logic Basic is to provide programming in
Basic adapted to modern window operating systems, since the older
versions of Basic were designed for the MS-DOS operating system.
Another purpose is to facilitate program development by providing
simple commands and functions that perform tasks that are difficult to
implement in other programming languages, making programming
pleasant, simple, fun and interesting.

Logic Basic allows the user to easily develop commercial programs,
reports, animations, games, presentations, educational programs,
musicals and more.

1.2 The Logic Basic Interface

Logic Basic has a code environment where you write your program,
this environment has a text box to the main code and more 6 text
boxes for the code extensions. It also has the environment of
windows, where the results of the program will be shown.

In Logic Basic the program is executed sequentially, that is, from the
first line to the last line, or until the line where the EndProgram
command is placed. However, the order of program execution can be
changed by the GoTo command or by subroutines and functions.

To run the program, click on the "Run" button (green arrow to the
right) or press the F5 key, in this way Logic Basic will load the main
window, which is the location that will receive the code commands,
which can write texts, create buttons, text boxes, pictures,
animations, background images, draw geometric shapes, and also
allow you to interact with the keyboard, mouse, hard disk,
microphone, and so on.

1.3 Code extensions

There are also "Code extensions", which are text boxes where you
can put some code snippets to better organize your program. To
access the main code, you must press the code button (button
containing the letter "C"), and to access the extensions, simply press
one of the 6 red buttons on the right side of the code button.

You can imagine these extensions as a continuation of the main code,
so that when you run the program, it will be as if they were
concatenated (stitched) to the main code.

If you press one of the buttons of "code extensions", the Logic Basic
shows in the text box below the code that corresponds to the
respective extension. At the top right of the code window there is a
text box labeled "Code Name" where you can be written a name to
identify the code extension. This name is optional, it is not necessary
to put it, but it is recommended to improve the clarity and reasoning of
the program.

1.4 Bookmarks

The LB Editor has the “Bookmark” feature that allows the user to
mark certain lines of code and then find them quickly, which is useful
when the code is too long. To mark or unmark a line, position the
cursor on the line and press CTRL + F2. Therefore, when the user

wishes to go to the next line containing a bookmark, simply press the
F2 key.

1.5 Workspace Settings

The code environment can be configured according to user
preferences by accessing the Edit → Settings options, which will
display a window that allows you to configure font, commands color,
background color, and to turn lines numbering on or off.

1.6 Debug the program code

Often programming errors occur, undeclared or incorrectly declared
variables, syntax errors, invalid characters in the code, and so on. To
facilitate the identification of the cause of errors, a debugging routine
was created, so that when executing the program, the LB will display
in a small window the number of the editor (0 for main code, 1 for 6 for
code extensions), the number line and the contents of the text being
executed. Then the user can follow the execution of the code step by
step to the line where the error is occurring.

To start debugging the program code, go to the options Program →
Debug or press the corresponding button on the top bar of the
window.

1.7 Compile program (create an executable)

When you create a program, to run it, your source code must be in the
text editor of Logic Basic, so anyone can view and change their
content.

But let's assume you want to distribute or sell your program without
people having access to your source code. For this you can create an
auto-executable program (with the extension .exe), so that people can
run it without needing Logic Basic.

To compile your program, go to the Program → Compile options or
click the corresponding button in the upper bar of the window:

To compile the program follow these steps:

- Select the name of the source code (with extension .LBC,
abbreviation of Logic Basic Code), you can enter the name or click on
the "Choose source code" button;
- Choose the name of the executable program (with .exe extension),
you can enter the name or click the "Choose executable name"
button;

The following steps are optional:

- Internal name: Original name of the file without the extension.
- Original filename: Name of the file with the extension.
- Executable program icon: File name of the program icon (with .ico
extension), enter the path of the icon or click on the binocular to find it.
- Product name: The name of the product this file is distributed with.
- File version: The version number of the file.
- Product version: The version of the product this file is distributed
with.
- Program description: Brief description of the program.
- Author's name (copyright): Name of the author of the program.
- Company owns: Name of the company owner of the program.

1.8 Components Wizard

Logic Basic provides a tool to make it easier for you to create
components and design the interface of your application.

When you access this routine, you will see a window with a small
toolbox containing several types of components: Text, Button,
Currency, Check Button, Radio Button, Combo Box, List Box, Mask,
and Frame. Click on a component and then mark in the window the
location that you want to place it, for example:

When the design of your page is ready, you can generate the
corresponding code by clicking the Window → Generate Code
options or pressing the F3 key, which will then display a text box with
the code that you can copy and paste in your program:

Note that the generated code is a subroutine, so you should place it
after the EndProgram command:

1.9 Default Pictures

Logic Basic provides a window with several default pictures, whose
names can be assigned to the Picture property of components, to get
the name of the figure, double-click on it, that its name will be
transferred to the position of the cursor in the text box code.

1.10 Types of Buttons

You can create buttons of various predefined types by clicking the
“Types of Buttons" button and clicking the type of button you want
to create. Once this is done, the button code will be transferred to the
cursor position in the text box, and you can change the button position
(line, column) by changing the third and fourth arguments.

1.11 Default Animations

Logic Basic provides several standard animations that can be used in
your programs, especially games, and you can easily create an
animation with basic properties by clicking the "Default Animations"
button, choosing an animation and double-clicking on it, then the
animation code will be transferred to the text box.

Then you can change the properties and methods of the animation to
change the position, size, and so on.

1.12 Default Backgrounds

Logic Basic also offers several images that can be used as
background of the windows of your programs, to generate the code
corresponding to a background click on the button "Default
Backgrounds", choose an image and double-click on it.

Chapter 2

Creating Logic Basic Applications

2.1 The Main Logic Basic Window

When you run a program in Logic Basic, the main window is activated
to display the result of the first program commands. You can use only
the main window, or new windows that can be turned on and off at
any time to perform other routines.

To position a text, component, or graphic in the main window, you
must tell LB the row and column to be placed. By default the main
window has 27 rows by 78 columns, but this resolution can be
changed in the Window command.

2.2 Writing a text in the main window

To write a text in the main window in a position defined by Line,
Column, we first inform the desired position, and then the text to be
written in the window:

Position 11, 30
Write "Welcome to Logic Basic!"

Then press the "Run" button, or press F5. The result should be the
phrase Welcome to Logic Basic! written in the center of the main
window.

To close the window and return to the code text box, press F6.

2.3 Creating a small application in Logic Basic

Our first application will be a program to calculate the average of two
numbers:

Generally the basic steps for creating an application in Logic Basic
are as follows:

Step 1: Scale and configure the application window.

Step 2: Create the program interface.
Step 3: Write the code that will control the program.
So the first step is to define the size and position of the window, which
will be in the center of the video monitor:

Window Size = 10, 40, Pos = Center, Center

With this configuration our window will have 10 lines by 40 columns
and will be centered in the video monitor.

The second step is to create the program interface, which will write
two sentences and create two Currency components and one
Command Button:

Position 2, 3; Write "First number:"
Position 4, 3; Write "Second number:"
Currency Number1, 2, 20, 10
Currency Number2, 4, 20, 10
Button BtnCalculate, Type7, 6, 18, "Calculate!"

The third step is to write the code that will control the program, in our
case, start the variables, position the cursor in the first field, wait for a
click on the button, and calculate the average of the two numbers:

StartPosition:

Currency Number1.Value = 0
Currency Number2.Value = 0
Currency Number1.SetFocus

Wait ClickButton

Message "The average of these two numbers is: ", (Number1.Value +
Number2.Value) / 2

GoTo StartPosition

EndProgram

In the code that controls the program, we put a label of name
"StartPosition" to mark the beginning of the routine. Then we start the
two numeric fields with the value equal to zero, and place the cursor
in the first field. Then we call the command "Wait ClickButton" to wait
for a click on the button. When the button is clicked a message will
appear with the result of the average of the two numbers. Finally, with
the command "GoTo StartPosition", we direct the execution of the
program to the beginning of the routine, thus allowing a new
calculation.

Chapter 3

Working with Variables

3.1 Variables Explanation

A variable is a user-supplied name to a location in the computer's
memory, which can contain text, numbers, and characters, and can
be modified at any time by the program.

In Logic Basic all variables must be declared before they are used,
because the program needs to know the type of each variable to work
with them correctly.

3.2 Declaring Variables

In other programming languages there are many types of variables,
for example, numbers can be Byte, Small Integer, Integer, Long
Integer, Float, Double Precision, and so on. In the old days it was very
important to have many types of variables, because the old
computers had little memory and disk space, and it was necessary to
design the programs to save the maximum memory.

As one of the goals of Logic Basic is to simplify programming, and
today's computers have lots of memory and disk space, all types of
variables are summarized into three types: String, Integer, and
Decimal.

To declare a variable you must type the word Variable or simply Var,
and then the variable name and its type. If you do not enter the
variable type, Logic Basic will assume that it's of type String. You can
declare multiple variables on a single line by separating them with a
comma, for example:

Variable Customer String, Age Integer, Salary Decimal

or simply

Var Customer String, Age Integer, Salary Decimal

To assign texts and numbers to variables, you must write the name of
the variable, then the = operator (equal) and the text or value to be
assigned, for example:

Customer = “Steven Spielberg”
Age = 70
Salary = 12345.67

Note that strings when they are assigned literally must be enclosed in
quotation marks, while numeric values can not be enclosed in
quotation marks. A number when enclosed in quotation marks will be
recognized as a string, and when unquoted, will be recognized as a
numeric value.

3.3 Rules for Variable Names

A variable name must contain at least one letter, may have only
letters or a combination of letters, numbers, and underscores, and
may contain letters, numbers, or underscores at the beginning of the
name.

Can not contain spaces, quotation marks, operators, can not have the
same name of the commands, functions, subroutines, Logic Basic
keywords, and you should avoid putting these names inside the
variable name.

3.4 Variable Data Types

String: Variables of type String can store a sequence of letters (texts),
characters and numbers (numeric characters). To literally assign text or
characters to a string, they must be enclosed in quotation marks:

Var S String

S = “Welcome to the Logic Basic!”

Integer: Integer variables store only integer numeric values, which can
range from -2,147,483,648 to 2,147,483,647.

Decimal: Decimal variables can store double-precision floating-point
numbers, as well integer numbers. Supports values that range in
value from -1.79769313486231570E+308 through
-4.94065645841246544E-324 for negative values and from
4.94065645841246544E-324 through 1.79769313486231570E+308
for positive values. Double-precision numbers store an approximation
of a real number.

3.5 Global and Local Variables

Global variables are usually declared in the main code (see rules in
the next topic) and can be accessed (used) in the main code,
extensions, functions or subroutines. Local variables are declared
inside a function and can only be used within it. It is possible to have
local variables with the same name in different functions without
causing conflicts.

It’s not a good programming technique you declare many global
variables, especially in large programs, as they can cause conflicts
and confusion in the execution of your program, for example, you can
inadvertently change the value of a global variable in a subroutine,

and you do not see this in the main code of the program, in this case it
will be difficult for you to detect the error.

Otherwise, when you declare a local variable, even if it has the same
name as another variable created in the main code or inside another
function, you are sure that any change in it will not affect the value of
other variables.

3.6 Rules for Variables Declaration

Global variables are declared in any line of the main code, code
extensions, subroutines or in the middle of functions.

Local variables are declared only in the first few lines of a function
(not subroutines).

Example:

Variable X Integer, S String 'These variables are global

X = 7
S = "is a prime number"

Sum() ‘Executes the function

Write X, " ", S
Write "Ret = ", Ret

EndProgram

Function Sum()
Variable X Integer, Y Integer 'These variables are Local

X = 10; Y = 20

Variable Ret Integer 'These variable is global

Ret = X + Y
EndFunction

The result of the above program will be as follows:

7 is a prime number
Ret = 30

Note that the variable X has been declared globally and locally, and
within the function the value 10 is assigned to that variable, and after
the execution of the function, the value of the global variable X (which
is equal to 7) has not changed.

